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IDENTIFYING AN UNKNOWN STATIC PROCESS HAVING UNIFORMLY
DISTRIBUTED OBSERVATIONAL ERRORS

1. INTRODUCTION

The black box identification problem is that of determining, on the basis of a finite
amount of experimential input-output data, an adequate modei of the unknown process
(the black box). The principal elements of this problem are a space of candidate models,
the spaces of admissible inputs and possible cutputs, and a criterion for adequate model-
ing, Zadeh [1,2]. Identification problems can be grouped according to whether the
space of candidate models is finite or infinite dimensional.

In the last decade extensive research has been conducted on the finite case, and many
remarkable results have been achieved. For instance, process parameter estimation and
state estimation fall into this group. They deal with estimating a finite number of un-
known scalar quantities of a physical process. In such problems the space of candidate
models is representable as a subset of a finite-dimensional Euclidean space. The literature
contains a number of excellent survey articles on methods for resolving these problems,
For example, Eykhoff, Van der Grinten, Kwakernaak, and Veltman [3] discuss a number
of techniques proposed for parameter estimation and cite some examples of industrial
models. Eykhoff [4] summarizes some important properties of the parameter-estimation
problem and gives a brief discussion on process state estimation. Cuenod and Sage [5]
present a survey of some of the computational problems and procedures of process-
parameter identification. Balakrishnan and Peterka [6] compare the principal ideas of
different approaches to the identification problem. Astrém and Eykhoff [7] give an over-
view of the field of identification as it relates to control-engineering applications. The
articles in Eykhoff [8] cover applications in aeronautics, biology, chemistry, economics,
engineering and physics. The text of Eykhoff [9] gives an excellent account of the theory
of parameter estimation.

Only a modicum of results has been discovered for identification problems in which
the space of candidate models is infinite dimensional. In such problems less knowledge
about the process is assumed to be known a priori. That is, it is not assumed that the
process evolves according to a linear or quadratic Jaw or that the process has a known
finite number of unknown quantities. Rather, loosely speaking, the black box is less
transparent than in the finite case. (From the viewpoint of a priori knowledge, it is more
appropriate to speak of unknown processes as gray boxes varying in shades rather than
as black boxes. Nevertheless, it is conventional to refer to all unknown processes as black
boxes.) In the finite case a finite amount of input-output data is sufficient for the pur-
pose of CORS‘G:‘EHC‘(’IHE deterministically the identity of a black box. This is not true for
the infinite case. For example, necessary and sufficient conditions are given by Stalford
and Leitmann [10] for representing a black box as a dynamical system governed by ordi-

nary differential equations. Those conditions cannot be verified by a finite amount of
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HAROLD L. STALFORD

input-output data. The publication by Gold [11] is an investigation on identifying a black
box in the limit (i.e., experimenting on the black box indefinitely). The limiting method
provides no means of establishing that a constructed model is the identity even though

the correct model actually may be obiained after finite experimentation. Although a
black box belonging to the infinite case cannot be identified deterministically with finile
data, it often can be identified with probability 1 only using finite data. For instance,
Stalford and Kuilback [12] established by means of an algorithm that noise-free static
black boxes representable by polynomials are identifiable with probability 1. The goal of

this report is to extend that investigation to static processes having uniformly distributed

nheorvatinnsl erears
ODEServaLiona: errors,

A precise statement of the problem under investigation is given in the nexti section.
A method of testing a candidate model for its probability of being the identity is pre-
sented in Section 3. The value of selecting random input data is discussed in Section 4.
An adequacy criterion for modeling is described in Section 5. An algorithm for identifying
an adequate polynomial model of an unknown static process is established in Section 6.

2. PROBLEM STATEMENT

For any integer m, we let R™ denote an m-dimensional Euclidean space. Let the
integers m; and mg represent respectively the dimensions of the input and output vectors
of a black box. Let X be a compact subset of R™i, and let ¥ be a Borel-measurable sub-
set of R™?, The sets X and Y are the sets of all admissible inputs and possible outputs
respectively. Let £ denote the space of all essentially bounded Borel-measurable functions
with domain X and range in Y. Throughout this report we let ¥ denote a subspace of £.

Let € be a positive veal number, For the purposes of this report, we define a black
box B to be a quadruple {X, f, Y, £}, where f is an unknown member of ¥, The mapping
f is the input-cutput relationship of the black box B, and it is termed the identity of B,
The number € represents the absolute bound on uniformiy distribufed observational errors.
Let such errors be denoted by 1. This random variable satisfies |n} < €, where iy} is the
Euclidean norm of 5 in R™°,

T at 4hn ~nhoaswmradiam ~F dha Aartdanatd faw ow it ac = ¥V hha danatad by @0« Mha Al
LT L LI T L VAL 1 UL LI© Valpyib 40 23 MIPUL A W~ A DT utiiu iR AT A ML W
servations satisfy the equation

B(x) = flx) + 7 1)
for all inputs x € X.

The space ¥ may seem too large a space of functions from which identities f
are permitted to belong, particularly when only elementary models of f are desirable.
Elementary models are those designed with elementary functions such as polynomials,
exponentials, etc. According to the Stone-Weierstrass theorem of analysis, a continuous
function can be approximated uniformiy by polynomials, with arbitrary accuracy. By

2
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Lusin’s theorem of measure theory, a Borel-measurable function is equal to a continuous
function except on a subset of X of arbitrarily small measure. Thus for any f contained
in £, we can approximate it arbitrarily close by a polynomial model if desired.

For f, g contained in £, we make the definition f = g if and only if f and £ are iden-
tical almost everywhere. Thus if f +# g, then f and g differ on a set of positive measure.

For the black box B = {X, f, Y, €}, let P be a prior distribution on the space § of
candidate models. In the sequel, this a priori probability is denoted by P(f=g), g € ¥.

Problem. Let q denote a real number in (0,1). Given a black box B= {X, 1, Y, €}
with £ € F and the a priori distribution P over ¥, find, by analyzing only a finite number
of observations, @ model g € T such that £ = g with probability q.

A diagram of our problem is given in Fig. 1. Randomly chosen inputs will be used
in resolving this problem. An asterisk is used as a superscript on an input variable to de-
note a randomly chosen input. It is tacitly assumed that members of a finite sequence of

randomly chosen inputs {x&, xJ, ..., x¥} are independently generated. We assume un-
limited freedom in selecting the inputs from X.

N £ ————»%) I O{x)

— g Hx} — glx)

Figure 1

We need the following notation. Let yg € R™0, and let r be a positive real number.
he closed ball centered at yo with radius r is denoted by

B(yg,r) = {y ER™0:|y —yy| < 1},

For a given measurable subset, say C, of R™¢, we let »(C) denote the Lebesgue
measure of C.
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3. TESTING A CANDIDATE FOR THE IDENTITY

Let g be conteined in ¥, We suppose that gix), x € X, can be observed without
error. We seek a means of increasing our confidence in f = g above the a priori value
P(f=g). Let x* be an input, and consider the difference |&{x*) — g{x™)|. I the differ-
ence is greater than ¢, then the model g is clearly not the identity f. On the other hand,
it i is less than or equal to €, then our confidence in g being the identity is enhanced.

Tha r]mmpp of enhaneement is the nlfnnnf of this gsection,

Let E denote the event that an input x results in the inequality
Ox) —gx)l < € (2)
being met. Write
= {x €EX:{f(x) - glx)l € 2¢}.

The event ¥ cannot occur whenever x is not a member of A, For x € 4 the event E can
‘oceur with the probability

v(Blg(x), €} N Biftx), €))

P{E|x) = v(B(f{x), €))

For the case that mg = 1, this equation reduces to

[f{x) — gz} )

P(Elx) = 1 - 5=

For a randomly chosen input £ the event E has the probability
P{E) = f P{E|x)P, {(x} dx
X

of occurring, where P, is the probability density of choosing a random input. For a uni-
form density we have P, (x} = 1/u(X) for all x € X, where u{X) is the Lebesgue measure
of X. Conditioned on f+# g, the event E occurs with the probability

1 v{B{g(x), €) N B(f(x), €))
PEIT#8) = 133 l BT @), €)) o

Note that P{E|f+ g) < 1, since f # g implies that f and g differ on a set of positive
measure,

Theorem 1. If a random input results in the event E, then the probability that f = g
conditioned on the happening E is given by
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. B P(f=g)
P(f=8E) = pro v+ 1 - Pir=2) 1 PEIT #2)

Proof. The probability that f = g conditioned on E is given by the Bayes’ formula as

_ ~ PE|f=g)P(f=8g)
P(f=gl|E) = P(EIf=g)P(f=g) + P(f+ g)P(EIf+# 8)

If f=g, then A = X and P(E|x) = 1 for all x € X; therefore P(E|f=g) = 1. The assertion
now follows since P(f¥ g) =1 - P(f=g).

It follows from this theorem that
P(f=glE) > P(f=g)

whenever P(f=g) # 0 or 1. Thus our confidence in f = g is increased by the occurrence
of the event E.

If P(f=g) = 0.5, then

_ 1
Pr=6if) = T5p@r7 2

In the next section we investigate the use of administering randomly chosen inputs
over n stages.

4. SELECTING A SEQUENCE OF INPUT DATA

We call a test that operation of administering an input to the black box and to the
model, observing the output of each, and checking to see if the event E occurs, We let n
represent the length of a given series of tests,

Since f # g implies that f and g differ on a set of positive measure, it follows that
P(E|x™) < 1 unless f = g. Thus there is the positive probability 1 — P(E|x*) that the
event E does not occur whenever f + g. As a consequence, if ™ is used as the test input
n consecutive times, then as n increases without bound we are sure to find out that f # g
when this actually is the case. This remark raises a question. Which method gives the
highest probability of f = g, conditioned on the event E occurring at each of n tests: the
method of administering different randomly chosen inputs for each test or the method of
applying the same randomly chosen input for ail n tests? We establish in the proof of the
next theorem that the former method gives the highest probability.

Let Sy = {x{, x5, ..., )} denote a sequence of distinct (independent) randomly
chosen inputs. Let 8 = {x¥, x¥, ..., x*} denote the sequence of length n of the same
randomly chosen input x*. Fori=1, 2, ..., n, let E;(Sy) denote the occurrence of the

event E for the input xf‘ € 84, and let E;(S,) denote the occurrence of the event E for
the ith application of the input x* € §,.
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Theorem 2. For the seguences Sg and S; of length n, we have

ol dN s P(f=2) .
\ —g[f_ } “ ‘”} P(f=g) + 11 - PU-DIP(EIF#3) -

| kY

f+ g)

P(f ¢/ Ei(sd)>> P(f =¢iM) E;-(SS)).
i=1 i=1

Proof. Since the random inputs of Sy are randomly and independently chosen, it
follows that

Y

i n i in
P@ EASH gf #* g)< P@ E;(Ss)

i=1 i=1

H

A ] \ L
PQ’ ]E;—{Sd}]f% g)= 11 PE;SHIf + &) = PHEIF# £).
i=1 i=1

This together with Theorem 1 gives Eq. (3).

‘The probability of the event

() Eitso
i=1

i
<
2
=X

i

| v{B{f(x), €})

p( - B8 la* = x} _ [V{B{g{x},e} N B(f(x;,e);-r
W - -
\i=1 i

Integrating over all x € X gives

) fi
n _ 1 r{B(glx}, €) 0 B{f{x}), €})
i=1

Applying the Hélder inequality of integration theory establishes that

L
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PR(E|f # g) < P(ﬂ Ei(S;)

i=1

fa&g).

This expresses that there is a higher probability of finding out that f # g (when this is the
case) if distinct random inputs are used rather than if a single random input is used for
all tests. It follows from Theorem 1 that

n P —
P(f -5\ Ei(Ss)> - 7=
i=1

P(f=g) + [1 —P(f=g)1P(ﬂ Ei(Sy)|f * g)

i=1

¥rom this equality, together with the previous inequality and Eq. (3), it follows that the
last inequality of Theorem 2 is met.

For P(f = g) # 0 we have the corollary

The probability P(E|f # g) is the probability that the observed output ®(x*) will be
within the error € of the output g(x*) of the model. For any x € X the value g(x) is
referred to as the predicted output of the black box. In the modeling of unknown sys-
tems, it is desirable to have a model with which the observations can be predicted within
an error of e. Let P, denote the probability that the event £ occurs whenever some in-
put x* is applied to the black box. Then P, = P(EIf# g). We call F,; the probability of
a successful test.

For n tests we write

Py(n) = P<f =g

h Ef(sd)).
i=1

We call P;(n) the probability of identification resulting from the occurrence of the event
E at each of n consecutive tests,

Our main equation, Eq. (3), can be rewritten as

P(f=g)
Py(n) = : ()
Y P(t=g) + 1 -P(=g) P"

7




HAROLD L. STALFORD

In the modeling of a particular physical process, we cannot in general know with
probability 1 that a certain model is the identity of a black box. Rather, we must be
content with a model that has a high probability of a successful test and that gives us a

ARl LINAL 1lras IS PG UIIILY U1 8 SRl O00002a%%1 565

high level of confidence in it being a replica of the black box.,

For given values of P, P{f = g), and P;(n), Eq. (4) provides a criterion for testing the
adequacy of a certain model g. Suppose we desire a given value P, as the probability of
a successful fest. Beginning with an initial confidence P{f = g}, we would like to increase
our confidence to the Jevel P;{n}. The number of tests n necessary to provide the adds-
tional confidence is given by

I 1 1'!
P{f=g)
log{ —4———
Pi(n)
n = o] 3 {5)

log [%J
5

that is, n is the solution of Eq. (4). For example, with (B, P{f =g}, P;{n)} = (0.99, 0.5,
(.95}, we have from Eq. (D) that n = 283 fests. If P{f=g) is increased to 0.8, then
n = 155, However, if P(f= g) is decreased to 0.2, then n = 431, In view of this we

make the following definition.

Definitinn 1 A model

S HEERAVILALE A i1

P(f= g), Pi(n)) provided the

Thus adequacy is a function of the probability of a successful test, an a priori con-
fidence in f = g, and an a posteriori confidence in f = g. Note that n is an increasing

function of P; and Pj{n) and is a decreasing function of P{f=g).

6. IDENTIFICATION ALGORITHM

In this section we present an algorithm for identifying a polynomial function of a
single variable. Afterwards, the vector case is discussed.

LN . P e o dnl P omddang o f o [ Taw o= T 1.4

J.Jt?ll j LACLuLe bllE Tidbs Uj. PULY LU Luu{,uuua oL ofe leii.‘ll.llt:* JART I 4 ‘C gy i
P{f=g), a nonzero value, be the initial confidence in the polynomial model g € F being
the identity of a given black box (X, 7, ¥, €), where f & F, X is compact in R, and
Y = R}, Let P, be a preset level for the probability of a successful test. Let Py{n) >

Dif = oY ho tha # nasterinr confidance venuivod Af oany madal o Aaf £ Dise ooz 20 0 nan
L' = Bj VT LT & posieElndrn Culijiucuic tcuicy Gt aily oGS £ Ui 5. WUl EGdl o U LOIr

struct an adequate model g, that is, one for which the event E occurs after each of n
tests, where n satisfies Eq. {(5). Our goal is reached with the algorithm given below in
Theorem 3. First, we need some lemmas.

The following lemma establishes that a single Lipschitz constant K is satisfied by ali
polynomials of degree less than m + 1 that satisfy compact constraints at m + 1 distinct
points.
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Lemma 1. Lef m be any positive integer, Let X be a compact subset of R. For
i=0,1, 2, ..., m, let y; € X be distinct, and let 1; denote a compact interval of R1.
Then there exists an integer K such that

lp(x) - p(¥) < Klx -y, %,y € X,
for all polynomials p of degree less than m + 1 satisfying
pOYNEL, i=0,1,2,...,,m.

Proof, A polynomial p of degree less than m + 1 is represented by its m + 1 coef-
ficients, i.e., a point in RM+*1. Let I be the cartesian product of I, i = 0, 1, 2, ..., m.
I is a compact subset of RMm*1, Define

1 3% %% ... ¥

y R R v
H =

|t Ym Ym e Imo |

The matrix H is a mapping from the space R™M*1 of coefficients into the space R™*1 of
values.

H is a nonsingular Van der Monde matrix [13]. Thus the set H™1[] is a compact
subset of R™M*1, This set represents the set of all polynomials of degree less than m + 1
that satisfy the compact interval constraints I;, i = 0, 1, 2, ..., m. Consider the map

G:H1[I1XX - R,

where
m
Glo, x) = 2 iaixil, x € X,
i=1
nnd whava v & IF-11711 iqc varmvacantad e v — r o ) Mha wrahia v as) o
QG WIICIC < a3 L+ 0 ISpILEUNWR OY & W, G, g, +vy By s 1l Vaaul UL, &) io

the derivative at x of the polynomial represented by a. Define

K = max {|G(e, x)|: ¢ € H1[I], x € X},

which exists since G is a continuous map with compact domain. The mean-value theorem
establishes the assertion of the lemma.

In the next lemma we show how to construct an interval, say I, about f(x), x € X,
such that if g(x) is set equal to any value in 7, then the event E occurs with a probability
greater than P, whenever x is the input.
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Lemma 2. Let x € X, and let the input x be administered T Fmes, resulting in the
observations ©y(x), j= 1, 2, ..., T. Let T be an integer large enough so that

Bs(x) - B4(x) = 2eP,,

where

Bs(x) = max {B;(x):j=1,2,..., T}
and

O{x) = min {G;(x):j = 1, 2, ..., T}

If g{x) is chosen so that
Bx) — ¢ < g{x) < Op{x) + €,

then whenever the input X is administered the probability of the event E occurring is
greater than B,

Proof. We want to show that

(1-F)2e > |f(x) - glx)l.

Since

it follows that
10{x) + € — Ogx) + e} = {f(x) - glx)l.
The lemma follows since

1 -P)2e > 2¢ — [B,lx) - O{x)]

2
3

Ze - [B(x) - Oix)] = 0.

Theorem 3. Let (X, 1, Y, €) be a black box with £ € F. Let the values P, and Pj(n}
be given. Let P be a prior distribution over ¥, Then a model ¢ € F can be constructed
such that g is an adequale model of £,

Proof {algorithm}. Such a moedel is constructable by means of the following algo-
rithm. This algorithm consists of an iterative procedure of generating a candidate poly-
nomial and then of testing the candidate. The iterations are halted whenever a candidate
passes the test.

Before beginning the iterations, we generate an initial candidate pg to be tested in
the first iteration.

i0
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Let x3 be chosen randomly from X. Set yg = xj. Throughout this proof, x and y
are used to denote inputs. Using Lemma 2 with x = y¢, apply the input yo until the
inequality
s(y0) — Oi(yo) = 2¢F;

is satisfied. Define

£00) = 5 [0s(30) + Oyoll .

Let po be the constant polynomial with the value g(ygy). Note that

Q. (va) — €
S\ Us

N
!
[am]
=
2

N

D

Let m = 0, and proceed to the testing phase.

Testing. In general, m is a nonnegative integer. Fori= 0, 1, 2, ..., m the values
g({y;) have been established for the inputs ¥;. We have a candidate polynomial p,, of the
kth degree, 0 < k < m, such that

Prn(yvi) = g(vy), 1=0,1,2,...,m.

Let n satisfy Eq. (5) for the probability P(f=p,,). Forj=1, 2, ..., n, choose randomly
x}" from X, and observe the output @(xf‘). If the constraint equations

[0(]) - pplxf)l <€, j=1,2,..,n,

are met, then the polynomial p,, passes the test; set g = p,,, and we are done. If not,
then let j; be the smallest integer in {1, 2, ..., n} such that

1©(}) = Py lxi)l > €.

(Of course, if this inequality holds for some j; < n, then x}’;ﬂ is never selected nor applied
as an input.) Proceed to the modeling phase.

Modeling. Let y,41 = x}';. Using Lemma 2 with x = y,;,43, apply the input ym+q
until the inequality

Bs(ym+1) - O(yman) = 2¢

TRV L - .

is satisfied. Define

EOms1) = 5 [0sTmi1) + O1men)]

Let p be the smallest integer in {k, k + 1, ..., m + 1} such that there is a polynomial
Pm+y of the pth degree satisfying the constraint '

11
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Ouly;) — € € Ppar(y;) < Oy + € {6)

foralli= 0,1, 2, ..., m+ 1. {Recall that f{y;) satisfies the same set of constraints.) Of

all ausonle amaToean -y URPUPRS: N- U . SUNIP I SgpRURI, 1.7 DIVERRY & c . W YN Sy | S - NP SN Y. SRR § ROV S
ali UL POy LHULIHALS Bavisly g Hicguaiily {(U), iU Py, 1 DO LLE LAl MULNUZes e Junc-
tional
m+1
Y Sup P ) — @il:a; € [O4(y) — €, Op(yi) + €1} M
i=g
We redefine

2{vy = p_ (¥}
_ “mE+1?

foraili=0,1,2, ..., m+ 1. Refurn to the testing phase.

Note that if p = m + 1, then
_ 1
Pms1(¥) = 5 [8y(ys) + 8;(v)]

Fraw w1 i =0IN 1 9 [ T A | Mhia FAallnwn ocinan thove o
LUL Il b T Wy Ay Sy aswy dFF 7 4, 230D LU gl witat i

0
£
£
£
£
[{
i+

{m + 1)th degree passing through the midpoints of
@y~ &,y +el, i=01,....m+ 1,
The midpoints of these intervals give a minimum value to the functional (7).

Since the polynomial p,,,, satisfies inequality (8) foraily;, i=0,1, 2, ..., m + 1,
it follows from Lemma 2 that the event E occurs with a probability greater than F; when-
ever any of the inputs y,, i =0, 1, 2, ..., m + 1, are administered.

Let N be the degree of the polynomial f. Since the polynowmial f satisfies the con-
straints of inequality (6) for all inputs vy, it foliows then from the definition of p that
p < N. The modeling phase, therefore, never produces a polynomial candidate whose
degree is greater than that of the black box. Each succeeding iferation produces a better
candidate in the sense that more constraint equations are satisfied, Before each modeling
phase, the cld candidate p,, satisfies m constraint equations. After the modeling, the new
candidate p,, 4 satisfies an additional constraint equation.

We now establish that the above iterative procedure terminates with probability 1
as the number of iterations goes to infinity.

Let m increase without bound. Let Z denote the nonnegative integers. Let {y;:iE€ Z}
be the set of inputs generated in the previous procedure. The probability is 1 that this set
is dense in X. For each member ¥; the constraints

Oy} — € < fly) < By(y) + ¢ (8)
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are satisfied. Using Eq. (1), note that

85(3’;') = f(yi) + max {TIU:J = 1s 2, ey T';}

®I(y;) = f(y;) + min {1?,_;1] = 1, 23 vy Tz}a

where n;; is the error in the observation obtained for the jth application of the input y;.

o; = max {n;:j=1,2,.., T}
B; = min {n;:/=1,2,.., T:}.

O,(y;) + 2 - Oy(y;)) = 2¢ + B; — ;. (9)

Let A> 0. Forj=1, 2, ..., N + 1, there exists with probability 1 an integer i(j)
such that

2¢ + ﬁl(]) - G’.'i(j) < A.

ol

t; = max {i(j):j=1,2,...,N+1}L
It follows from Lemma 1 that there is an integer K such that for all m > ¢,

[P (x1) — Pplxg)l < Klxq — x5

and

’f(xl) - f(x2)| < lel - x2| (10)

for all x,, x5 € X. Decompose X into a union of disjoint intervals X, k=1, 2, ..., J,
where J is some finite integer larger than N + 1, such that

K p(Xg) <A, (11)
whare #(X ) ig the lanoth of the intoerval X, Far cae =1 9 J thora avicts fwrith
FPLITLY [AA2 BT A0 VALY SLLIQULE WA RilL Lllved YAl Lipg, 4 UL vaahil v Ay Ly 3 ¥y WIIVIL TALDW | FFiULL
probability 1} an integer i(k) such that y;(r) € X and

2¢ + ﬁ,‘(k} - Wik) < AL (12)

Let

13
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ty = max {i{k):k=1,2,...,J}.
Define ¢t = max {f{, t3}. From inequalities (8), (8), {9), and {12} it follows that
i) — Pelvigl < A (138)
The inequalities (10), (11}, and (13) together with the triangle ineguality imply that
[F{x) — py(x}] < 3r (14)

for all x € X. With p; as a model of f, we have from inequality (14) that

=0y
PE|x) > 1 - ==
Ze
for all x € X. Thus
a8
P{Eifa&pt) > 1 - o

Since A > 0 was arbitrary, it follows that P(E|f+ p,) converges to 1 as A converges
to zero, As a result, the probabilily of passing the testing phase goes to 1. Actually the

nolvnomial » . oonvarcgag tn f ag m gnec tn infinity.  Thic comnlotoc the nranf of tha
Poiynomial b, CORVArEes 10 7 a8 M goss 10 mMImty.  1his compldips Ine Progl o 1w

theorem.

Consider the vector case where f is a polynomial function defined on X C R™ and
has range in R™9, Pork=1,2, ..., my, let f; denote the kth component of f, that is,
f=1{f1,f2 ..., fmy). Then f; is a polynomial function from X into R. Let a vector
x € X be denoted by its components (%1, Xz, ..., &m;). Letj € {1, 2, ..., m;}. By vary-
ing the argument x; and holding all other arguments of x fixed, the polynomial fr{xy, x2,
sary Xj=1, Xj41, ..., Xm,;} can be estimated according to the previous algorithm. Conse-
quently fp can be estimated and therefore the identity 7 as well.

7. CONCLUSION

We have investigated the problem of identifving a black box whose input-output
relationship f represents a siatic process having uniformly distribufed errors in the ob-
servations of the output. We have assumed unlimited freedom in selecting test inputs
from a compact subset of the input space. Identification of f is conducted by comparing
the observations of the black box’s output with that of a model. Bayes’ formula is used
to detive an equation for the a posteriori probability of identification as a function of
o priori probability of identification, a probability of observing the output of the black
box within error bounds, and a number of conducted tests (all tests being successfully
passed).

We have defined a criterion for determining an adequaie model of a black box. A
model is defined to be adequate if it passes a series of n tests, where n is a given function
of three guantities. Each test consists of administering randomiy chosen inputs and ob-
serving the difference between the output of the black box and the output of the model.
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The test is passed if the difference is less than the error bound of the noise. Sequences
of distinct random inputs are shown to provide more useful knowledge about a model
being adequate than are sequences of inputs in which an input appears more than once.
The integer n is an increasing function of the probability of a successful test and the

a posteriori probability of identification. That is, a more adequate model will satisfy
more tests,

M lnern wmunounmtnd o 3 awmdifinntiom alonuithine Fawx datammaining an adasiiata wandal ~AF
YWE Llave RICOTIILEU dll JUCIVLILabLilLl AlgULALLIILED 11U UCLTILILILIIIE dll dautSijudlt jauvuice UL

a black box that is representable as a polynomial function of a single variable. The algo-
rithm consists of a procedure that iterates between a modeling phase and a testing phase,
The procedure is halted whenever an adequate model is obtained. A discussion is given
on generalizing the algorithm to handle vector-valued polynomials. This algorithm can be
used to construct an adequate model for black boxes in which f is an essentially bounded
Borel-measurable function, since polynomials approximate such functions within any
degree of accuracy.
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